Easy Vitessce Documentation#
Easy Vitessce is a Python package for turning Scanpy and SpatialData plots into interactive Vitessce visualizations with minimal code changes.
Installation#
Requires Python 3.9 or greater.
pip install 'easy_vitessce @ git+https://github.com/vitessce/easy_vitessce@main'
How to Use and Examples#
The package can be imported with
from easy_vitessce.VitessceSpatialData import VitessceSpatialData
from easy_vitessce import configure_plots
Scanpy is also required for this package.
import scanpy as sc
Note: All example datasets are from Scanpy unless otherwise noted.
Deactivating/Reactivating Interactive Plots#
Passing disable_plots
into configure_plots
will deactivate Vitessce plots.
Passing enable_plots
into configure_plots
will reactivate Vitessce plots.
Note: While diable_plots
and enable_plots
can be passed in at the same time, listing the same plot in both will result in an error.
configure_plots(disable_plots = ["spatial", "violin"])
configure_plots(enable_plots = ["spatial", "violin"])
Spatial Plot (SpatialData version)#
Note: This example uses SpatialData’s mouse brain MERFISH dataset.
sdata = sd.read_zarr(spatialdata_filepath)
sdata.pl.render_images(element="rasterized").pl.render_shapes(element="cells", color="Acta2").pl.show()
spatialdata_filepath
should lead to a .zarr
file containing spatial data with an Images
folder. The file structure of the example above is as follows. Since it does not have a Labels
folder, calling pl.render_labels()
will not display any data.
SpatialData object, with associated Zarr store:
├── Images
│ └── 'rasterized': DataArray[cyx] (1, 522, 575)
├── Points
│ └── 'single_molecule': DataFrame with shape: (<Delayed>, 3) (2D points)
├── Shapes
│ ├── 'anatomical': GeoDataFrame shape: (6, 1) (2D shapes)
│ └── 'cells': GeoDataFrame shape: (2389, 2) (2D shapes)
└── Tables
└── 'table': AnnData (2389, 268)
Spatial Plot (Scanpy version)#
Easy Vitessce’s spatial
function also displays a spatial plot, but with Scanpy’s syntax. This example uses Scanpy’s Visium dataset.
adata = sc.datasets.visium_sge(sample_id="Targeted_Visium_Human_Glioblastoma_Pan_Cancer", include_hires_tiff=True)
sc.pl.spatial(adata, color = "log1p_n_genes_by_counts")

Scatterplots#
Easy Vitessce’s embedding
function displays UMAP, PCA, and t-SNE scatterplots.
adata = sc.datasets.pbmc68k_reduced()
sc.pl.embedding(adata, basis="umap", color="CD79A")
sc.pl.embedding(adata, basis="pca", color=["CD79A", "CD53"])
sc.pl.embedding(adata, basis="tsne", color=["bulk_labels", "louvain", "phase"])

Example of UMAP using Easy Vitessce
Dotplot#
Note: To select/deselect multiple genes, hold SHIFT while clicking on genes in the Gene List.
adata = sc.datasets.pbmc68k_reduced()
sc.pl.dotplot(adata, markers = ["C1QA", "PSAP", "CD79A", "CD79B", "CST3", "LYZ"], groupby="bulk_labels")

Violin Plot#
adata = sc.datasets.pbmc68k_reduced()
sc.pl.violin(adata, markers = "AP2S1", groupby = "bulk_labels")

Heatmap#
adata = sc.datasets.pbmc68k_reduced()
sc.pl.heatmap(adata, groupby = "bulk_labels", markers = ['C1QA', 'PSAP', 'CD79A', 'CD79B', 'CST3', 'LYZ'])

Contents: